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1. RS1 model with a small curvature

In this section we will consider in details the Randall-Sundrum (RS) model with the small

curvature. The main features and differences from a conventional (large curvature) scenario

will be pointed to.

The RS model [1] is a theory with one extra dimension (ED) in a slice of the AdS5

space-time. It has the following background warped metric:

ds2 = e2κ(πrc−|y|) ηµν dxµ dxν + dy2 , (1.1)

where y = rcθ (−π 6 θ 6 π), rc being the “radius” of the ED, and ηµν is the Minkowski

metric. The points (xµ, y) and (xµ,−y) are identified, so one gets the orbifold S1/Z2.

The parameter κ defines a 5-dimensional scalar curvature of the AdS5 space. For the

sake of simplicity we will call κ “curvature”.

The so-called RS1 model has two 3D branes with equal and opposite tensions located

at the points y = πrc (called the TeV brane) and y = 0 (referred to as the Plank brane). If

k > 0, the tension on the TeV brane is negative, whereas the tension on the Planck brane is

positive. All the SM fields are constrained to the TeV brane, while the gravity propagates

in four spacial dimensions.

It is necessary to note that metric (1.1) is chosen in such a way that 4-dimensional

coordinates xµ are Galilean on the TeV brane where all the SM field live, since the warp

factor is equal to unity at y = πrc.

By integrating 5-dimensional action over variable y, one gets an effective 4-dimensional

action, that results in the “hierarchy relation” between the reduced Planck scale M̄Pl and

5-dimensional reduced gravity scale M̄5:

M̄2
Pl =

M̄3
5

κ

(

e2πκrc − 1
)

. (1.2)
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The reduced gravity scale M̄5 is related to the Planck mass M5 by the equation

M5 = (2π)1/3 M̄5 ≃ 1.84 M̄5 . (1.3)

Unless explicitly stated otherwise, we consider the reduced 5-dimensional Planck scale.

From the point of view of a 4-dimensional observer located on the TeV brane, there

exists an infinite number of graviton KK excitations with the masses

mn = xn κ, n = 1, 2 . . . , (1.4)

where xn are zeros of the Bessel function J1(x). Note that xn ≃ π(n + 1/4).

The interaction of the KK gravitons with the the SM fields on the TeV brane is

described by the Lagrangian:

Lint = − 1

M̄Pl
T µν G(0)

µν − 1

Λπ
T µν

∞
∑

n=1

G(n)
µν . (1.5)

Here T µν is the energy-momentum tensor of the matter, and G
(n)
µν is the graviton field with

the KK-number n. The parameter Λπ,

Λπ = M̄5

(

M̄5

κ

)1/2

, (1.6)

is the physical scale on the TeV brane.

Note that in most of the papers which treated the RS model (including ref. [1]), the

background metric was taken to be

ds2 = e−2κ|y| ηµν dxµ dxν + dy2 , (1.7)

instead of expression (1.1). In such a case, the hierarchy relation looks like

M̄2
Pl =

M̄3
5

κ

(

1 − e−2πκrc

)

, (1.8)

with the graviton masses

mn = xn κ e−πκrc , n = 1, 2 . . . . (1.9)

In order the hierarchy relation (1.8) to be satisfied, while the lightest graviton masses

to be around one TeV, one has to introduce two huge mass scales (large curvature option),

κ ∼ M̄5 ∼ M̄Pl , (1.10)

and take κrc ≃ 12.

Thus, one obtains a series of graviton resonances with the lightest KK mode around

one TeV. The experimental signature of the the RS model with the large curvature (1.10)

is a real or virtual production of the massive KK graviton resonances.

There exists a serious shortcoming of the scenario with the curvature and fundamental

gravity scale being of the order of the Planck mass (1.10). Namely, kinetic terms of the

– 2 –
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graviton fields on the TeV brane do not have a canonical form, and Lorentz indices are

raised with the Minkowski tensor, while the metric in the coordinates xµ is e−πκrηµν (for

details, see ref. [2]).

The correct interpretation of the effective 4-dimensional theory can be achieved by

changing variables:

xµ → zµ = xµe−πκrc . (1.11)

As one can see, metric (1.7) turns into metric (1.1) under such a replacement.

In the present paper we will use an approach based on the metric (1.1) (small curvature

option, [3]–[5]) and put

M̄5 = (1 ÷ 20) TeV , κ = (0.1 ÷ 1) GeV . (1.12)

In order the hierarchy relation (1.2) to be satisfied, it is then necessary to take rcκ ≃ 8÷9.5,

i.e. rc ≃ 0.15÷1.8, fm. Thus, no large scales are introduced, contrary to the large curvature

case. In what follows, the RS1 model with the small curvature will be referred to as large

warped dimension scheme.

Instead of the fact that the size of the ED rc is of the order of 1 fm, and masses of

the first KK gravitons are relatively small, they give a negligible correction to the Newton

law. Indeed, the Newton potential between two test masses m1 and m2 separated by the

distance r is equal to

V (r) = GN
m1m2

r
+

∞
∫

m1

dm

πκ
GN

m1m2

r
e−mr

= GN
m1m2

r

(

1 +
e−m1r

πκr

)

. (1.13)

Since m1 = x1κ, where x1 = 3.84 is the first zero of the Bessel function J1(x), we find that

the relative correction from the KK gravitons to the Newton law is less than 2 · 10−15.

In our scheme, a coupling of the KK graviton with the SM fields is rather weak,1 since

Λπ = 100

(

M5

TeV

)3/2 (

100 MeV

κ

)1/2

TeV . (1.14)

However, in physical matrix elements the smallness of the coupling Λ−2
π is compensated by

the large number of real gravitons which can be produced or by infinite number of virtual

gravitons. As a result, the matrix elements are defined by the 5-dimensional gravity scale

M̄5, not by Λπ or κ separately [4, 5]. This circumstance reminds that in the ADD model

with flat EDs [8].

Previously, we studied gravity effects in the RS1 model with the small curvature in the

scattering of ultrahigh neutrinos off the nucleon [4], in exclusive double diffractive events

at the LHC [6], as well as in e+e− annihilation into lepton pairs at the ILC [7].

The goal of the present paper is to estimate gravity effects in a two-photon production

at the LHC. The search limits on the fundamental Planck scale will be derived which are

insensitive to the curvature of the warped space-time of the model.

1In the conventional scheme of the RS model, Λπ ≃ 1TeV.
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2. Virtual graviton contribution to a diphoton production

Diphoton final states are a signature of many interesting physics processes. For instance,

one of the main discovery channels for the Higgs boson search at the LHC is the γγ final

state. An excess of γγ production could be a signature of interactions beyond the SM.

In addition, the diphoton final state is interesting in its own right. Using good energy

resolution of the electromagnetic calorimeter [9], the transverse momentum of the photons,

p⊥, can be directly determined with a good precision. A possible excess in p⊥-distribution

could indicate effects coming from a new physics, in particular, from large EDs.

What is the reason to consider large warped dimension scenario? First, the spectrum

of the KK gravitons (1.4) is very similar to that in the model with one ED [8] (see previous

section). Second, all matrix elements for the scattering of the SM fields can be formally ob-

tained from corresponding matrix elements calculated in the model with one flat dimension

by using the following replacement [4, 7]:

M̄4+1 → (2π)−1/3 M̄5 , Rc → (πκ)−1 . (2.1)

Here M̄4+1 is a 5-dimensional reduced Planck scale, Rc being the radius of the extra flat

dimension. As a result, all cross sections appear to be rather large (as in the ADD model

with 4 + 1 dimensions). Finally, as was shown in ref. [5], astrophysical restrictions are not

applied to the RS model with the large ED (i.e. small graviton masses), if the curvature

lies within the limits mentioned above (1.12).2

Let us consider the two-photon production with hight transverse momenta (p⊥ ≪ √
s

is assumed):

p p → γ γ + X , (2.2)

where X denotes a remnant of the colliding protons. The differential cross section is equal

to

dσ

dp2
⊥

(pp → γγ + X) =
∑

a,b

1
∫

0

dxafa/p(µ
2, xa)

1
∫

0

dxbfb/p(µ
2, xb)

× θ(xaxb − x2
⊥)

√
xaxb

√

xaxb − x2
⊥

dσ̂

dt̂
(ab → γγ) . (2.3)

Here fa/p(µ
2, xa) is the distribution of the parton of the type a in momentum fraction

xa inside the proton taken at the factorization scale µ (this scale will be fixed below).

dσ̂/dt̂ denotes the cross section of the hard sub-process ab → γγ. We have introduced the

dimensional variable

x⊥ =
2p⊥√

s
. (2.4)

Throughout the paper, ŝ, t̂ and û denote Mandelstam variables of the partonic sub-process

(ŝ + t̂ + û = 0, ŝ = s xaxb, t̂û/ŝ = p2
⊥).

2Actually, much smaller values of κ are allowed [5].
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The contribution of the virtual gravitons to the process (2.2) comes from the quark-

antiquark annihilation,

q q̄ → G(n) → γ γ , (2.5)

and gluon-gluon fusion,

g g → G(n) → γ γ . (2.6)

The matrix elements for both the partonic sub-processes (2.5)–(2.6) are given by the ex-

pression

M = AS . (2.7)

The fist factor in the r.h.s. of eq. (2.7) is

A = T q(g)
µν T γ µν − 1

3
(T q(g))

µ

µ (T γ)ν
ν , (2.8)

where T
q(g)
µν is the energy-momentum tensor of the quark (gluon) field, T γ

µν is the photon

energy-momentum tensor.

The graviton exchange in the s-channel leads to the following expression:

S(ŝ) =
1

Λ2
π

∞
∑

n=1

1

ŝ − m2
n + imnΓn

. (2.9)

Here Γn denotes a total width of the graviton with the KK number n and mass mn:

Γn = η mn

(

mn

Λπ

)2

, (2.10)

with η ≃ 0.09 [10]. The width is small provided n is not extremely large.

Then the relevant partonic cross sections are (see, for instance, formulae in appendix

of ref. [3]):

dσ̂

dt̂
(qq̄ → γγ) =

t̂2 + û2

192πŝ2t̂û

∣

∣2e2
q − t̂ûS(ŝ)

∣

∣

2
, (2.11)

dσ̂

dt̂
(gg → γγ) =

t̂4 + û4

512πŝ2
|S(ŝ)|2 , (2.12)

where eq is the electric charge of the quark q.

In the region
√

ŝ ∼ M̄5 ≫ κ, the sum (2.9) can be calculated analytically, an explicit

form of the function S(ŝ) was derived in ref. [5]:

S(ŝ) = − 1

4M̄3
5

√
ŝ

sin 2A + i sinh 2ε

cos2A + sinh2ε
, (2.13)

where

A =

√
ŝ

κ
, (2.14)

ε =
η

2

(

√
ŝ

M̄5

)3
. (2.15)
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Should we ignore the widths of the massive gravitons, and replace the summation in

KK number (2.9) by the integration in graviton masses using the relation dn = dm/(πκ),

we get

ImS(ŝ) = − 1

2M̄3
5

√
ŝ

, ReS(ŝ) = 0 , (2.16)

in contrast to formula (2.13).

At
√

ŝ & 3.5 M̄5, we get from (2.13)–(2.15):

ImS(ŝ) ≃ − 1

2M̄3
5

√
ŝ

, ReS(ŝ) < 0.05 Im S(ŝ) . (2.17)

The inequality
√

ŝ > 3.5 M̄5 is equivalent to the inequality ∆mKK < Γn, where ∆mKK is

the mass splitting, and Γn is the graviton width for relevant KK numbers (corresponding

to mn ∼
√

ŝ) [5]. In such a case, one may regard a set of narrow graviton resonances to be

a continuous mass spectrum.

However, the kinematical region for our treatment is
√

ŝ ≤ √
s < 3M̄5. In this case,

expressions (2.16) become incorrect, and formula (2.13), which takes into account the

nonzero widths of the KK gravitons, should be used.

In appendix A we will demonstrate that our formula (2.13) is a correct expression for

the function S(s) (2.9).

3. 5-dimensional Planck scale: LHC search limits

The main goal of this section is to obtain the LHC search limit for the 5-dimensional Planck

scale M̄5.

Recently, the RS1 model with the large extra dimension has been checked by the

DELPHI Collaboration [11]. The gravity effects were searched for by studying photon

energy spectrum in the process e+e− → γ + E⊥� . No deviations from the SM prediction

were seen. The limit on M5 obtained is 1.69 TeV at 95% CL [11]. It corresponds to

the following bound on the reduced fundamental scale (see the relation between M5 and

M̄5 (1.3)):

M̄5 > 0.92 TeV . (3.1)

The search for large EDs (with flat metric) in the diphoton channel using of ≈ 200 pb−1

of data collected by the CDF and DØ experiments at
√

s = 1.96 TeV (Run II) have been

presented in refs. [12]. The p⊥-distribution up to ∼ 200 GeV has been measured. The data

are in a good agreement with the SM background. DØ Collaboration has also performed the

search for the massive gravitons (warped metric with the large curvature) in the diphoton

channel using high integrated luminosity [13]. No evidence for resonant production of the

gravitons has been found.

We should also mention the preliminary analysis by the CDF Collaboration based on

1.2 fb−1 of data [14]. No significant excess of the data over the expected background in

γγ + X events was observed in m(γγ) and p⊥-distribution.

In figures 1 we present the result of our calculations of gravity effects in the diphoton

production pp̄ → γγ + X at the Tevatron. We used a set of parton distribution functions

– 6 –
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SM (Born)

M5 = 1.0 TeV

M5 = 1.5 TeV

M5 = 2.0 TeV

Figure 1: The graviton contributions (including the interference term) to the process p p̄ → γ γ+X

(solid curves) vs. SM contribution (dashed curve) at the Tevatron. In this and all subsequent figures,

M5 denotes the reduced fundamental Planck mass.

(PDFs) from ref. [15] based on an analysis of charged-leptons proton/deutron data on deep

inelastic scattering collected in the SLAC-CERN-HERA experiments.

Generally, both PDFs and differential cross sections in (2.3) should depend on the

factorization scale µ due to higher order corrections, that results in µ-independent cross

section of the diphoton production (2.2). We restrict ourselves by first order expressions

for the partonic cross sections (2.11)–(2.12), and the factorization parameter is taken to be

equal to the relevant mass scale µ =
√

ŝ. A possible µ-dependence will be analyzed below

(see our comments after eq. (3.5)).

Let NS be a number of signal events, NB - number of background events. We define

the statistical significance S = NS/
√

NB , and require a 5σ effect. Then we obtain the

following bound from the Tevatron data3 (with the integrated luminosity L = 1 fb−1):

M̄5 > 0.81 TeV . (3.2)

In calculating numbers of events, we used a K-factor 1.5 for the SM background, while a

conservative value of K=1 was taken for the signal.

Let us stress that in our approach, the limit on M̄5 does not depend on the value of

the parameter κ, provided the inequality κ ≪ √
s is satisfied (see section 4 for details).

We expect that the gravity effects related with the virtual gluon exchange will be more

significant at the LHC, since

dσ(SM)

dp⊥
=

1

s3/2
f(x⊥, ln s) , (3.3)

3Let us notice, this bound is not the main goal of the paper.
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SM (Born)
M5 =   5 TeV

M5 = 10 TeV
M5 = 20 TeV

Figure 2: The s-channel graviton contribution to the process p p → γ γ + X for different values of

M̄5 (solid curves) vs. SM contribution (dashed curve) at the LHC.

where f(x⊥, ln s) depends weakly on s via scaling violation in PDFs. The gravity term

dσ(grav)/dp⊥ depends rather slowly on s (see eq. (4.9)). Thus, we obtain:

dσ(grav)

dσ(SM)
∼

(√
s

M̄5

)3

. (3.4)

Correspondingly, the search limit for the LHC can be roughly estimated to be M̄5 =

(6 ÷ 7) TeV.

In order to obtain a correct search limit for the LHC, we have calculated contributions

of s-channel gravitons to p⊥-distributions of the final photons for different values of M̄5

(see figure 2). The ratio of the gravity induced term to the SM one is presented on the next

plot (see figure 3). The ratio rises monotonically with p⊥ for all M̄5. Its dependence on M̄5

is in accordance with eq. (3.4). The details of our calculations are discussed in section 4.

Taking into accounts the K-factors described above, we obtain histograms in figure 4

which show a number of events per 35 GeV bin at the integrated luminosity L = 1 fb−1.

A statistical significance as a function of the 5-dimensional Planck scale is presented in

figure 5. Thus, we obtain the discovery limit of the LHC in the two-photon production in

the RS1 model with the small curvature:

M̄5 =

{

6.3 TeV , L = 100 fb−1

5.1 TeV , L = 30 fb−1 (3.5)

Let us stress that this limit (3.5) do not depend on the ratio κ/M̄5, contrary to the con-

ventional RS scenario (1.7) in which both the curvature κ and M̄5 are of order of the

4-dimensional Planck mass (1.10). In order to estimate systematic theoretical uncertain-

– 8 –
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M5 = 5 TeV

M5 = 7.5 TeV

M5 = 10 TeV

Figure 3: The ratio of the gravity induced cross section to the SM cross section for the diphoton

production at the LHC as a function of the photon transverse momentum.

SM(Born) × 1.5

M5 = 10 TeV

M5 = 5 TeV

Figure 4: The expected number of events per 35GeV bin at the integrated luminosity L = 1 fb−1

for the diphoton production at the LHC. The solid histograms denote the gravity contributions,

while the dashed one corresponds to the SM (Born) term times K-factor 1.5.

ties, we have calculated p⊥-distributions for different values of the PDF scale µ: µ2 = ŝ,

µ2 = 2ŝ, and µ2 = ŝ/2. It has appeared that an uncertainty in dσ(grav) related with the

PDF scale varies from 1.3% at p⊥ = 140 GeV to 6.4% at p⊥ = 1TeV.4 As for uncertainty

4Note, it is lower values of p⊥ that are actually relevant for a calculation of the significance S.
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L = 100 fb-1

L = 30 fb-1

Figure 5: The statistical significance for the process pp → γγ +X at the LHC as a function of the

5-dimensional (reduced) Planck scale.

in the ratio dσ(grav)/dσ(SM), it decreases slowly from 2.8% to 2.1%, respectively.5 As a

result, the systematic uncertainty for M̄5 from the PDF scale amounts to ∆M̄5 = 17 GeV

at L = 30 fb−1. Another systematic theoretical error comes from an uncertainty in cross

sections due to a certain proton PDFs. Adopting that it does not exceed 2.7% [15], we get

∆M̄5 = 23 GeV.

One of systematic experimental uncertainties contributing to the number of events

comes from luminosity measurements. The design precision of the luminosity is 5% at

L = 1 fb−1 [9]. However, for measurements based on L = 30 fb−1 or more, it is assumed

that a 3% uncertainty can be achieved [9] that results in ∆M̄5 = 26 GeV. The error in

measurements of the photon transverse momenta is less than 0.74% at p⊥ ≥ 140 GeV [9].

Rather small values of ∆M̄5 cited above may be understood as follows. Consider, for

instance, the case when NS and NB increased by the factor (1 + ρ) due to an increase of

the integrated luminosity (ρ ≪ 1). Then a corresponding variation of the significance S

can be compensated by much smaller variation of the 5-dimensional gravity scale: M̄5 →
M̄5 + ∆M̄5 ≃ M̄5 (1 + ρ/6).

Finally, let us demonstrate that an ignorance of the graviton widths would be a very

rough approximation. Figure 6 shows the gravity contribution to the p⊥-distribution cal-

culated with the use of equations (2.16). The significant difference of figure 6 from figure 2

can be explained as follows. As one can see from appendix A, after integrating over s,

ReS(s) averages to 0, while ImS(s) averages approximately to 1. However, the expres-

sions for the partonic cross sections (2.11), (2.12), contain quadratic term |S(s)|2 as well as

s-dependent factors. Moreover, the region of integration over parton momentum fractions

5All these numbers are insensitive to the value of M̄5.

– 10 –
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SM (Born)

M5 = 2.5 TeV

M5 = 5 TeV

M5 = 7.5 TeV

Figure 6: The same as in figure 2 (except for values of M̄5), but calculations were done for zero

widths of the KK gravitons (see formulae (2.16)).

xa, xb (see eq. (2.3)) depends on s, since xaxb ≥ 4p2
⊥/s.

Thus we conclude that the account of the width of the KK gravitons is a crucial point

for obtaining a correct result.

4. Important features and details of calculations

In this section, we will discuss some details of calculations of the p⊥-distribution for the

diphoton production at the LHC, and analyze a possible dependence of this distribution

on the parameters M̄5 and κ. In particular, we will show that actually the distribution

does not depend on κ (or, equivalently, on the ratio κ/M̄5, which is taken to to be small,

see eq. (1.12)).

We start from formula (2.2). After changing variables,

x = xa , τ = xa xb , (4.1)

it has the following form:

dσ

dp2
⊥

(pp → γγ + X) =
∑

a,b

1
∫

x2

⊥

dτ
√

τ
√

τ − x2
⊥

1
∫

τ

dx

x
fa/p(µ

2, x) fb/p(µ
2, τ/x)

dσ̂

dt̂
(ab → γγ) , (4.2)

where the partonic cross section dσ̂/dt̂ depends on the function S(ŝ) (2.13). Since ŝ = sτ ,

the latter is a function of τ . It is convenient to define

S̃(τ) =
[

−4M̄3
5

√
sτ

]

S(τ) . (4.3)

– 11 –
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Τ0-DΤ Τ0 Τ0+DΤ
Τ

-2

-1

1

2

ReS
�
HΤLH´10-4L

Τ0-DΤ Τ0 Τ0+DΤ
Τ

1

2

3

4

ImS
�
HΤLH´10-4L

Figure 7: The real and imaginary parts of one of the resonances in the function S̃(τ) which

describes virtual graviton contributions to partonic sub-processes. Both the curves correspond to

τ0 = 0.02, ∆τ = 8.8 · 10−9.

Let A = A0 + a, where A0 = (n0 + 1/2)π, n0 being an integer, and |a| ≪ 1. In a small

vicinity of the point τ0 = (A0κ/
√

s), the function S̃(τ) can be well approximated by the

espression

S̃(τ) ≃ −2 a − 2 i ε0

a2 + ε2
0

, (4.4)

where

ε0 =
η

2

(

√
sτ0

M̄5

)3
. (4.5)

We have taken into account that ε0 ≪ 1 for the relevant values of
√

s and M̄5 (i.e. for√
s = 14 TeV, M̄5 & 5 TeV).

One can see from (4.4) that the real part, Re S̃(τ), equals zero at τ = τ0 and has two

extremal points at τ = τ0 ± δ, where6

δ = η τ2
0

κ s

M̄3
5

. (4.6)

As for the imaginary part, Im S̃(τ), it has a very sharp peak at τ = τ0. Two peaks in the

real part of the resonance are separated by the distance 2δ, the width of the imaginary of

the resonance is also equal to ΓS = 2δ.

The forms of the real and imaginary parts of S̃(τ) are presented in figure 7 and figure 8,

with ∆τ = 10 δ on both the figures. All the curves were calculated using the values of

M̄5 = 20 TeV, κ = 1 GeV. Let us describe figure 7 first. The value of τ0 = 0.02002 was

taken, that corresponds to the equation
√

sτ0/κ = (630 + 1/2)π. Than we obtain that

ΓS ≃ 1.8 · 10−9. The calculations show that the next resonance is located at the point

τ0 = 0.02008. Thus, an average distance between neighboring peaks is much larger than

their widths. It reflects the fact that one cannot regard a set of narrow resonances to be a

continuous spectrum [5].

In the next two plots (see figure 8), τ0 = 0.10004, n0 = 1409, and ΓS ≃ 4.4 · 10−8. A

neighboring resonance with the number n0 = 1410 is located at τ0 = 0.10018.

6The relation τ = τ0 ± δ is equivalent to the relation a = ± ε0.
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Figure 8: The same as in figures 7, but for another peak in S̃(τ) located at τ0 = 0.1, with

∆τ = 2.2 · 10−7.

The differential cross section of the process under consideration is represented in the

form:

dσ = dσ(SM) + dσ(grav) + dσ(SM−grav) , (4.7)

where the last term comes from the interference between the SM and graviton interactions.

Since the SM amplitude is pure real, while the real part of each graviton resonance is

antisymmetric with respect to its central point τ0 (see the first curves in figures 7–8), the

interference term in (4.7) has appeared to be negligible in comparison with the pure gravity

contribution (the second term in (4.7)) after integration in variable τ .

The smaller is the value of τ0, the narrower is the peak and larger is its height (compare,

for instance, the curves in figure 7 and figure 8). The latter circumstance means that only

a smaller part of the graviton resonances is significant for numerical calculations. The

total number of the graviton resonances which contribute to the differential cross section is

equal to N = Int[
√

s (1 − x⊥)/(κπ)], with Int[z] being an integer part of z.7 Actually, the

main contribution to dσ(grav) comes from, approximately, (1/7)N first resonances, while

the account of the rest of (6/7)N resonances results in a few percent correction.

From all said above, we find that the gravity contribution to the partonic cross section

is proportional to

s2

[

1

M̄3
5

√
s ε0

]2

δ N ∼ 1

M̄3
5

√
s

. (4.8)

In other words, we obtain that the differential cross section (4.2) does not depend on the

curvature, and

dσ(grav)

dp⊥
=

1

M̄3
5

F (x⊥, ln s) , (4.9)

A weak s-dependence of F (x⊥, ln s) comes from the PDF scale. The numerical calculations

do confirm that the differential cross section of the process (2.3) does not depend on κ and

decreases as the third power of the fundamental gravity scale M̄5.

7The variable x⊥ was defined above (2.4).
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At small values of x⊥, the main contribution to the p⊥-distribution comes from the

gluon-gluon fusion (2.6). Assuming that g(µ2, x) ∼ x−1, we get a rough estimate from (4.2):

dσ(grav)

dp⊥
∼ x⊥

1
∫

x2

⊥

dτ
1

τ5/2
√

τ − x2
⊥

ln
1

τ
∼ 1

p3
⊥

ln
1

p⊥
. (4.10)

This form of dσ(grav)/dp⊥ is in satisfactory agreement with our numerical calculations at

p⊥ ≪ √
s (see figures 1, 2).

In order to get a correct numerical result, we divided a region of integration in variable

τ into small subregions around the resonance peaks. Since a typical value of N/7 exceeds

600 (N = 4367 for x⊥ = 0.02, κ = 1GeV), it took lots of computer time. Fortunately, a

number of integrations could be reduced if we use the facts that the gravity cross section

is actually independent of κ, while N ∼ κ−1.

5. Conclusions

In the present paper the model with one large warped extra dimension (i.e. the RS1 scheme

with the small curvature κ) is studied [4, 5]. In such an approach, the reduced fundamental

gravity scale M̄5 lies in the TeV region (i.e. varies from one to tens TeV), and κ ≪ M̄5.

The mass spectrum is similar to that in the ADD model [8] with one flat extra dimension.

We have calculated the p⊥-distribution for the process pp → γγ + X at the LHC,

with p⊥ being the transverse momenta of the final photons. The LHC discovery limit on

the reduced fundamental gravity scale M̄5 has been obtained which is given by eq. (3.5).

Remembering relation between the 5-dimensional Planck mass M5 and its reduced value

M̄5 (1.3), we find the reach of the LHC in the search for the RS gravitons decaying into

diphoton channel:

M5 =

{

11.6 TeV , L = 100 fb−1

9.4 TeV , L = 30 fb−1 (5.1)

In the conventional RS scenario [1], both κ and M̄5 are of order of the 4-dimensional

Planck mass, κ ∼ M̄5 ∼ MPl. A search limit on the lightest graviton mass depends crucially

on the ratio κ/M̄5. On the contrary, our bounds (5.1) do not depend on κ, since the gravity

cross sections are insensitive to its value (provided κ ≪ M5).

We have shown that neglecting the width of the KK gravitons would give us incorrect

results. A zero width approximation is valid only if an effective collision energy of partonic

sub-processes is at least 3.5 times larger than M̄5 (see eq. (2.17)).
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Figure 9: The real part of S̄(s) calculated by using eq. (2.13). The line Re S̄(s) = 0 corresponds

to eq. (2.16). The values of the parameters are: M̄5 = 5 TeV, κ = 1GeV.
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Figure 10: The function ln ImS̄(s) calculated by using eq. (2.13). The horizontal line corresponds

to ImS̄(s) = 1 (see eq. (2.16)). The values of the parameters are the sane as in figure 9.

A. Exact formula for S(s) vs. zero width approximation

In this appendix we will present a result of computations of the function S(s) with the use

of three different equations (2.13), (2.16), and (2.9).

Let us define the dimensionless function:

S̄(s) =
[

−2M̄3
5

√
s
]

S(s) . (A.1)

The real and imaginary parts of S̄(s) in the energy region around the point
√

s0 = 5TeV

are shown in figure 9 and figure 10, respectively. The values of the parameters were chosen

to be M̄5 = 5 TeV, κ = 1 GeV. The resonance structures on both figures are obtained by

using formula (2.13), while the solid lines correspond to “zero width” equation (2.16). One

can see that formula (2.16) is incorrect.
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Figure 11: The imaginary part of S̄(s) calculated by using eq. (2.9). Only two terms in the sum

are taken into account. The values of the parameters are the same as in figure 10.
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Figure 12: The same as in figure 11 but with eight terms taken into account in eq. (2.9).

To demonstrate that our formula (2.13) is a correct expression for S(s), one should

calculate the sum (2.9). It appeared that only the terms closed to n = n0, where mn0
=

xn0
κ ≃ √

s0, are important in the sum. For a sake of simplicity, we consider only the

imaginary part of S̄(s). In figure 11 we present the function ln ImS̄(s) calculated for the

case when only two terms in the sum, namely, n = n0 and n = n0+1, are taken into account.

The curve in the next figure corresponds to the case when already eight neighboring terms

are taken into account.8

A comparison of figure 12 with figure 10 demonstrates us that our formula (2.13) is a

nice approximation of the original expression (2.9).

8For a wider region of s more terms have to be considered in the sum (2.9).
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